Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Med (N Y) ; 3(10): 705-721.e11, 2022 10 14.
Article in English | MEDLINE | ID: covidwho-2076532

ABSTRACT

BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).


Subject(s)
Antibodies, Neutralizing , COVID-19 Drug Treatment , Administration, Intranasal , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Immunoglobulin G , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
2.
Nat Commun ; 13(1): 3921, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1921607

ABSTRACT

Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in "mouse-adapted" SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.


Subject(s)
COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Aged , Animals , COVID-19/virology , Humans , Immune Sera , Mice , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Microbiol Spectr ; 10(3): e0153822, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1879119

ABSTRACT

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion-stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma, and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent, and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. IMPORTANCE This manuscript describes an extended work on the Newcastle disease virus (NDV)-based vaccine focusing on multivalent formulations of NDV vectors expressing different prefusion-stabilized versions of the spike proteins of different SARS-CoV-2 variants of concern (VOC). We demonstrate here that this low-cost NDV platform can be easily adapted to construct vaccines against SARS-CoV-2 variants. Importantly, we show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. We believe that these findings will help to guide efforts for pandemic preparedness against new variants in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Mice , Newcastle disease virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
EClinicalMedicine ; 45: 101323, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1828408

ABSTRACT

Background: Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based recombinant Newcastle disease virus vaccine expressing the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It's being developed by public sector manufacturers in Thailand, Vietnam, and Brazil; herein are initial results from Thailand. Methods: This phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy males and non-pregnant females, aged 18-59 years and negative for SARS-CoV-2 antibodies, were eligible. Participants were randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1 µg, 1 µg+CpG1018 (a toll-like receptor 9 agonist), 3 µg, 3 µg+CpG1018, 10 µg, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively. Secondary outcomes were immunogenicity measures (anti-S IgG and pseudotyped virus neutralisation). An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity through day 43 per protocol. ClinicalTrials.gov (NCT04764422). Findings: Between March 20 and April 23, 2021, 377 individuals were screened and 210 were enroled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5·7% to 17·1% among vaccine groups and was 2·9% in controls; there was no vaccine-related serious adverse event. The 10 µg formulation's immunogenicity ranked best, followed by 3 µg+CpG1018, 3 µg, 1 µg+CpG1018, and 1 µg formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from 122·23 international units per mL (IU/mL; 1 µg, 95% confidence interval (CI) 86·40-172·91) to 474·35 IU/mL (10 µg, 95% CI 320·90-701·19), with 93·9% to 100% of vaccine groups attaining a ≥ 4-fold increase over baseline. Interpretation: NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg and 3 µg+CpG1018 formulations advanced to phase 2. Funding: National Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates Foundation, National Institutes of Health (USA).

5.
Cell Host Microbe ; 30(3): 373-387.e7, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1767977

ABSTRACT

SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Sci Rep ; 11(1): 22164, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514425

ABSTRACT

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/therapeutic use , Interferon Type I/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/therapeutic use , Viral Nonstructural Proteins/immunology , Adaptive Immunity , Animals , COVID-19/immunology , COVID-19/prevention & control , Chickens , Gene Deletion , Humans , Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Nonstructural Proteins/genetics
7.
Nat Commun ; 12(1): 6197, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1493100

ABSTRACT

Rapid development of COVID-19 vaccines has helped mitigating SARS-CoV-2 spread, but more equitable allocation of vaccines is necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine candidate based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here, we show that the NDV vector expressing an optimized spike antigen (NDV-HXP-S) is a versatile vaccine inducing protective antibody responses. NDV-HXP-S can be administered intramuscularly as inactivated vaccine or intranasally as live vaccine. We show that NDV-HXP-S GMP-produced in Vietnam, Thailand and Brazil is effective in the hamster model. Furthermore, we show that intramuscular vaccination with NDV-HXP-S reduces replication of tested variants of concerns in mice. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters.


Subject(s)
Newcastle disease virus/immunology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Female , Mice , Mice, Inbred BALB C , Newcastle disease virus/metabolism , SARS-CoV-2/pathogenicity , Vaccines, Attenuated/therapeutic use
8.
Proc Natl Acad Sci U S A ; 117(45): 28344-28354, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-887237

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.


Subject(s)
COVID-19/metabolism , Interferons/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Binding Sites , Chlorocebus aethiops , HEK293 Cells , Humans , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/metabolism , Protein Binding , Signal Transduction , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL